QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

- GENERAL DESCRIPTION

The NJM2902 consists of four independent high-gain operational amplifiers that are designed for single-supply operation.

Operation from split power supplies is also possible and the low power supply drain is independent of the magnitude of the power supply voltage.

Used with a dual supply the circuit will operate over a wide range of supply voltages. However, a large amount of crossover distortion may occur with loads to ground. An external current-sinking resistor to- V_{S} will reduce crossover distortion. There is no crossover distortion problem in single-supply operation if the load is direct-coupled to ground.

- FEATURES

- Single Supply
- Operating Voltage
- High Output Voltage
- Slew Rate
- Low Operating Current
- Package Outline
- Bipolar Technology
- PIN CONFIGURATION

NJM2902N
NJM2902M
NJM2902V

PIN FUNCTION
1.A OUTPUT
2.A-INPUT 3.A + INPUT 4. \mathbf{V}^{+}
5.B +INPUT
6.B-INPUT
7.B OUTPUT

- PACKAGE OUTLINE

NJM2902M
NJM2902N

NJM2902V
$(+3 \mathrm{~V} \sim+30 \mathrm{~V})$
($\mathrm{V}^{+}-2 \mathrm{~V}$)
($0.5 \mathrm{~V} / \mu \mathrm{s}$ typ.)
(1mA typ.)
DIP14,DMP14,SSOP14
8.C OUTPUT 9.C -INPUT 10.C + INPUT 11.GND 12. $\mathrm{D}+$ INPUT 13.D-INPUT 14.D OUTPUT

- EQUIVALENT CIRCUIT ($1 / 4$ Shown)

- ABSOLUTE MAXIMUM RATINGS

($\mathrm{Ta}=25^{\circ} \mathrm{C}$			
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	$\mathrm{V}^{+}\left(\mathrm{V}^{+} N\right)$	32 (or ± 16)	V
Differential Input Voltage	V_{10}	32	V
Input Voltage	VIC	-0.3~+32	V
Power Dissipation	PD	$\begin{gathered} \text { (DIP14) } 570 \\ \text { (DMP14) } 300 \\ \text { (SSOP14) } 300 \\ \hline \end{gathered}$	mW
Operating Temperature Range	Topr	-40~+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-50~+125	C

- ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}\right)$						
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V_{10}	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	-	2	10	mV
Input Offset Current	10	$\mathrm{lN}^{+}-\mathrm{INS}^{-}$	-	5	50	nA
Input Bias Current	l_{B}	INN^{+}or ln^{-}	-	20	500	nA
Large Signal Voltage Gain	A_{V}	$\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega$	-	100	-	V / mV
Maximum Output Voltage Swing	Vom	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.5	-	-	V
Input Common Mode Voltage Range	Vicm		0~3.5	-	-	V
Common Mode Rejection Ratio	CMR		-	85	-	dB
Supply Voltage Rejection Ratio	SVR		-	100	-	dB
Output Source Current	Isource	$\mathrm{V}_{\mathbb{N}}{ }^{+}=1 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$	20	40	-	mA
Output Sink Current	IsINK	$\mathrm{V}_{\mathbb{N}}{ }^{+}=0 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=1 \mathrm{~V}$	8	20	-	mA
Channel Separation	CS	$\mathrm{f}=1 \mathrm{k} \sim 20 \mathrm{kHz}$, Input Referred	-	120	-	dB
Operating Current	Icc	$\mathrm{R}_{\mathrm{L}}=\infty$	-	1	2	mA
Slew Rate	SR	$\mathrm{V}^{+} N= \pm 15 \mathrm{~V}$	-	0.5	-	V/us
Gain Bandwidth Product	GB	$\mathrm{V}^{+} N= \pm 15 \mathrm{~V}$	-	0.5	-	MHz

- TYPICAL CHARACTERISTICS

Maximum Output Voltage Swing

vs. Load Resistance

Operating Current vs. Operating Voltage

Input Offset Voltage
vs. Temperature
($\mathrm{V}^{+}=5 \mathrm{~V}$)

Voltage Gain, Phase vs. Frequency

Voltage Gain vs. Operating Voltage

Maximum Output Voltage

vs. Operating Voltage

- TYPICAL CHARACTERISTICS

Input Offset Voltage vs. Temperature

Operating Current vs. Temperature

Input Bias Current vs. Temperature

Maximum Output Voltage Swing vs. Temperature

Output Sink Current vs. Temperature

- TYPICAL CHARACTERISTICS

Pulse Response

Source Current

Maximum Output Voltage Swing

 vs. Frequenccy$$
\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Improvement of Cross-over Distortion Equivalent circuit at the output stage

NJM2902,in its static state (No in and output condition) when design, Q_{U} being biassed by constant current (break down beam) yet, Q_{L} stays OFF.
While using with both power source mode, the cross-over distortion might occur instantly when $Q_{\llcorner } \mathrm{ON}$.
There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.
It is adjustable especially when using both power source mode, constantly to use with higher current on Q_{u} than the load current (including feedback current),and then connect the pull-down resister R_{P} at the part between output and GND pins.

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

